Sibling fixed effects (FE) models are useful for estimating causal treatment effects while offsetting unobserved sibling-invariant confounding. However, treatment estimates are biased if an individual's outcome affects their sibling's outcome. We propose a robustness test for assessing the presence of outcome-to-outcome interference in linear two-sibling FE models. We regress a gain-score--the difference between siblings' continuous outcomes--on both siblings' treatments and on a pre-treatment observed FE. Under certain restrictions, the observed FE's partial regression coefficient signals the presence of outcome-to-outcome interference. Monte Carlo simulations demonstrated the robustness test under several models. We found that an observed FE signaled outcome-to-outcome spillover if it was directly associated with an sibling-invariant confounder of treatments and outcomes, directly associated with a sibling's treatment, or directly and equally associated with both siblings' outcomes. However, the robustness test collapsed if the observed FE was directly but differentially associated with siblings' outcomes or if outcomes affected siblings' treatments.


翻译:固定效果(FE)模型有助于估计因果关系,同时抵消未观察到的兄弟姐妹间差别和观察到的FE。但是,如果一个人的结果影响其兄弟姐妹的结果,那么治疗估计就带有偏颇性。我们提议对线性双胞胎FE模型中结果对结果的干扰进行评估的稳健性测试。我们减少兄弟姐妹间持续结果对兄弟姐妹间待遇和所观察到的FE的预处理结果之间的差异。但是,在某些限制下,观察到的FE部分回归系数表示结果对结果的干扰。Monte Carlo模拟显示了几个模型下的稳健性测试。我们发现,观察到的FE表示结果对结果的外溢效应,如果它直接与兄弟姐妹间结果或影响兄弟姐妹间结果的治疗直接相关联,或者如果观察到的FE与兄弟姐妹间结果有直接但有差别的联系,那么稳健性测试就会崩溃。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年4月10日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年4月10日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员