In recent years, precision agriculture is becoming very popular. The introduction of modern information and communication technologies for collecting and processing Agricultural data revolutionise the agriculture practises. This has started a while ago (early 20th century) and it is driven by the low cost of collecting data about everything; from information on fields such as seed, soil, fertiliser, pest, to weather data, drones and satellites images. Specially, the agricultural data mining today is considered as Big Data application in terms of volume, variety, velocity and veracity. Hence it leads to challenges in processing vast amounts of complex and diverse information to extract useful knowledge for the farmer, agronomist, and other businesses. It is a key foundation to establishing a crop intelligence platform, which will enable efficient resource management and high quality agronomy decision making and recommendations. In this paper, we designed and implemented a continental level agricultural data warehouse (ADW). ADW is characterised by its (1) flexible schema; (2) data integration from real agricultural multi datasets; (3) data science and business intelligent support; (4) high performance; (5) high storage; (6) security; (7) governance and monitoring; (8) consistency, availability and partition tolerant; (9) cloud compatibility. We also evaluate the performance of ADW and present some complex queries to extract and return necessary knowledge about crop management.


翻译:近些年来,精密农业正在变得非常受欢迎。引进现代信息和通信技术用于收集和加工农业数据使农业实践发生革命性的变化。这是不久前(20世纪初)开始的,其驱动力是收集一切数据的低成本;从种子、土壤、化肥、虫害、气象数据、无人驾驶飞机和卫星图像等领域的信息到气候数据、无人驾驶飞机和卫星图像等领域的信息。特别是,今天农业数据开采被视为在数量、多样性、速度和真实性方面的大数据应用。因此,在处理大量复杂和多样的信息以获取农民、农艺专家和其他企业的有用知识方面遇到了挑战。这是建立作物情报平台的关键基础。该平台将有助于高效的资源管理和高质量的农艺决策及建议。在本文件中,我们设计并实施了大陆一级的农业数据仓库(ADW)。ADW的特征是:(1) 灵活的系统;(2) 真实农业多数据集的数据整合;(3) 数据科学和商业智能支持;(4) 高性业绩;(5) 高储存;(6) 安全;(7) 治理与监测;(8) 现有一致性、可获取性和复合性农业知识的兼容性。(9) 我们还评估了AD作物的兼容性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年6月2日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
10+阅读 · 2018年2月9日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
相关论文
Arxiv
0+阅读 · 2021年6月2日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
10+阅读 · 2018年2月9日
Arxiv
6+阅读 · 2016年1月15日
Top
微信扫码咨询专知VIP会员