In recent years, precision agriculture is becoming very popular. The introduction of modern information and communication technologies for collecting and processing Agricultural data revolutionise the agriculture practises. This has started a while ago (early 20th century) and it is driven by the low cost of collecting data about everything; from information on fields such as seed, soil, fertiliser, pest, to weather data, drones and satellites images. Specially, the agricultural data mining today is considered as Big Data application in terms of volume, variety, velocity and veracity. Hence it leads to challenges in processing vast amounts of complex and diverse information to extract useful knowledge for the farmer, agronomist, and other businesses. It is a key foundation to establishing a crop intelligence platform, which will enable efficient resource management and high quality agronomy decision making and recommendations. In this paper, we designed and implemented a continental level agricultural data warehouse (ADW). ADW is characterised by its (1) flexible schema; (2) data integration from real agricultural multi datasets; (3) data science and business intelligent support; (4) high performance; (5) high storage; (6) security; (7) governance and monitoring; (8) consistency, availability and partition tolerant; (9) cloud compatibility. We also evaluate the performance of ADW and present some complex queries to extract and return necessary knowledge about crop management.
翻译:近些年来,精密农业正在变得非常受欢迎。引进现代信息和通信技术用于收集和加工农业数据使农业实践发生革命性的变化。这是不久前(20世纪初)开始的,其驱动力是收集一切数据的低成本;从种子、土壤、化肥、虫害、气象数据、无人驾驶飞机和卫星图像等领域的信息到气候数据、无人驾驶飞机和卫星图像等领域的信息。特别是,今天农业数据开采被视为在数量、多样性、速度和真实性方面的大数据应用。因此,在处理大量复杂和多样的信息以获取农民、农艺专家和其他企业的有用知识方面遇到了挑战。这是建立作物情报平台的关键基础。该平台将有助于高效的资源管理和高质量的农艺决策及建议。在本文件中,我们设计并实施了大陆一级的农业数据仓库(ADW)。ADW的特征是:(1) 灵活的系统;(2) 真实农业多数据集的数据整合;(3) 数据科学和商业智能支持;(4) 高性业绩;(5) 高储存;(6) 安全;(7) 治理与监测;(8) 现有一致性、可获取性和复合性农业知识的兼容性。(9) 我们还评估了AD作物的兼容性。