We continue the line of work initiated by Goldreich and Ron (Journal of the ACM, 2017) on testing dynamic environments and propose to pursue a systematic study of the complexity of testing basic dynamic environments and local rules. As a first step, in this work we focus on dynamic environments that correspond to elementary cellular automata that evolve according to threshold rules. Our main result is the identification of a set of conditions on local rules, and a meta-algorithm that tests evolution according to local rules that satisfy the conditions. The meta-algorithm has query complexity poly$ (1/\epsilon) $, is non-adaptive and has one-sided error. We show that all the threshold rules satisfy the set of conditions, and therefore are poly$ (1/\epsilon) $-testable. We believe that this is a rich area of research and suggest a variety of open problems and natural research directions that may extend and expand our results.
翻译:我们继续Goldreich和Ron(ACM Journal, 2017年)发起的关于测试动态环境的工作路线,并提议对测试基本动态环境和当地规则的复杂性进行系统研究。作为第一步,我们在这项工作中侧重于与基本细胞自动数据相对应且根据临界值规则演变的动态环境。我们的主要成果是确定一套关于地方规则的条件,以及一个根据符合条件的当地规则进行测试的元值。元值与元值之间有着不同的差异,元值与复杂多元值(1//\epsilon)$是非适应性的,并且存在片面错误。我们表明所有阈值规则都符合一套条件,因此是可测试的。我们认为这是一个丰富的研究领域,并提出了各种开放的问题和自然研究方向,可以扩展和扩大我们的结果。