Algorithm NCL is designed for general smooth optimization problems where first and second derivatives are available, including problems whose constraints may not be linearly independent at a solution (i.e., do not satisfy the LICQ). It is equivalent to the LANCELOT augmented Lagrangian method, reformulated as a short sequence of nonlinearly constrained subproblems that can be solved efficiently by IPOPT and KNITRO, with warm starts on each subproblem. We give numerical results from a Julia implementation of Algorithm NCL on tax policy models that do not satisfy the LICQ, and on nonlinear least-squares problems and general problems from the CUTEst test set.


翻译:在存在第一和第二衍生物的地方,包括制约因素在某种解决办法上可能不线性独立的问题(即无法满足LICQ),Alogorithm NCCL是针对一般的平稳优化问题设计的。它相当于LanceLOT扩大Lagrangian方法,改写为非线性限制的子问题短序,可由IPOPT和KNITRO有效解决,每个子问题都有温暖的开端。我们从Julia执行Algorithm NCL关于不符合LICQ的税收政策模式以及非线性最低问题和CUnest测试集的一般问题中得出数字结果。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月5日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关VIP内容
专知会员服务
85+阅读 · 2020年12月5日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员