This short review aims to make the reader familiar with state-of-the-art works relating to planning, scheduling and learning. First, we study state-of-the-art planning algorithms. We give a brief introduction of neural networks. Then we explore in more detail graph neural networks, a recent variant of neural networks suited for processing graph-structured inputs. We describe briefly the concept of reinforcement learning algorithms and some approaches designed to date. Next, we study some successful approaches combining neural networks for path-planning. Lastly, we focus on temporal planning problems with uncertainty.
翻译:这一简短的审查旨在使读者熟悉与规划、时间安排和学习有关的最先进的工程。首先,我们研究最先进的规划算法。我们简要介绍神经网络。然后,我们更详细地探讨最新的神经网络变体,即适合处理图表结构投入的神经网络。我们简单介绍强化学习算法的概念和迄今为止设计的一些方法。接下来,我们研究一些将神经网络结合到路径规划中的成功方法。最后,我们侧重于不确定的时间规划问题。