In this paper, we study stochastic optimization of areas under precision-recall curves (AUPRC), which is widely used for combating imbalanced classification tasks. Although a few methods have been proposed for maximizing AUPRC, stochastic optimization of AUPRC with convergence guarantee remains an undeveloped territory. A recent work [42] has proposed a promising approach towards AUPRC based on maximizing a surrogate loss for the average precision, and proved an $O(1/\epsilon^5)$ complexity for finding an $\epsilon$-stationary solution of the non-convex objective. In this paper, we further improve the stochastic optimization of AURPC by (i) developing novel stochastic momentum methods with a better iteration complexity of $O(1/\epsilon^4)$ for finding an $\epsilon$-stationary solution; and (ii) designing a novel family of stochastic adaptive methods with the same iteration complexity of $O(1/\epsilon^4)$, which enjoy faster convergence in practice. To this end, we propose two innovative techniques that are critical for improving the convergence: (i) the biased estimators for tracking individual ranking scores are updated in a randomized coordinate-wise manner; and (ii) a momentum update is used on top of the stochastic gradient estimator for tracking the gradient of the objective. Extensive experiments on various data sets demonstrate the effectiveness of the proposed algorithms. Of independent interest, the proposed stochastic momentum and adaptive algorithms are also applicable to a class of two-level stochastic dependent compositional optimization problems.


翻译:在本文中,我们研究了精确召回曲线下地区的随机优化(AUPRC),该曲线被广泛用于消除不平衡的分类任务。虽然提出了尽量扩大AUPRC的少数方法,但用趋同保证优化AUPRC的随机优化仍然是一个未开发的领域。最近的一项工作[42] 提出了在尽可能扩大平均精确度的代谢损失的基础上对AUPRC采取有希望的方法;并证明为寻找非凝聚目标找到一个以美元为单位的直径lon=5美元独立的稳定价格解决方案而设计了一个新型的随机适应方法。在本文中,我们进一步改进AURPC的随机优化,办法是(一) 开发新型的随机同步动力方法,使美元(1/ epsilon4) 更复杂;以及(二) 设计一个具有美元(1/\ epsilon4) 复杂性的新型适应方法,在实践中享有更快的可应用性趋同水平水平。(我们提议在排序上采用两种创新方法,在排序上对一个稳定的排序进行精确的排序更新。我们建议,在排序上采用两种方法,在排序上,在排序上采用一种稳定的排序上,在排序上,在排序上采用一种关键的排序上,在排序上,在排序上,在排序上采用一种排序上,在排序上,在排序上,在排序上,在排序上采用一种排序上采用一种排序上采用一种排序上,在排序上采用一种为顺序上,在排序上,在排序上,在排序上采用一种排序上,在排序上采用一种对顺序上,在排序上采用一种排序上,在排序上,在排序上,在排序上采用一种对顺序上,在排序上采用一种对顺序上采用一种对顺序上采用一种对顺序上采用一种对顺序上进行一种调整。

0
下载
关闭预览

相关内容

动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。 动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员