Most existing statistical network analysis literature assumes a global view of the network, under which community detection, testing, and other statistical procedures are developed. Yet in the real world, people frequently make decisions based on their partial understanding of network information. As individuals barely know beyond friends' friends, we assume that an individual of interest knows all paths of length up to $L=2$ that originate from them. As a result, this individual's perceived adjacency matrix $\bbB$ differs significantly from the usual adjacency matrix $\bbA$ based on the global information. The new individual-centered partial information framework sparks an array of fascinating endeavors from theory to practice. Key general properties on the eigenvalues and eigenvectors of $\bbB_E$, a major term of $\bbB$, are derived. These general results, coupled with the classic stochastic block model, lead to a new theory-backed spectral approach to detecting the community memberships based on an anchored individual's partial information. Real data analysis delivers interesting insights that result from individuals' heterogeneous knowledge, yet these insights cannot be obtained from global network analysis.
翻译:大多数现有的统计网络分析文献都假定了对网络的全球观点,根据这种观点,社区检测、测试和其他统计程序得以发展。但在现实世界中,人们经常根据对网络信息的局部理解做出决策。由于个人几乎除了朋友的朋友之外还几乎不了解。我们假设,一个感兴趣的个人知道所有长度不超过2美元(美元=2美元)的路径。因此,此人认为的相邻矩阵$\bbbB$与通常的基于全球信息的对等矩阵$\bbbA$差异很大。新的以个人为中心的部分信息框架引发了从理论到实践的一系列令人着迷的努力。关于美元\bbB_E$(美元的主要术语)的主要一般属性是$\bbbB$(美元=2美元)。这些一般性结果,加上经典的随机区块模型,导致一种新的理论支持的光谱法方法,用以根据固定的个人部分信息探测社区成员。真实的数据分析提供了有趣的洞察力,从个人的不同知识中得出了有趣的洞察力,然而这些洞察力是无法从全球网络获得的。