Knowledge graphs and ontologies provide promising technical solutions for implementing the FAIR Principles for Findable, Accessible, Interoperable, and Reusable data and metadata. However, they also come with their own challenges. Nine such challenges are discussed and associated with the criterion of cognitive interoperability and specific FAIREr principles (FAIR + Explorability raised) that they fail to meet. We introduce an easy-to-use, open source knowledge graph framework that is based on knowledge graph building blocks (KGBBs). KGBBs are small information modules for knowledge-processing, each based on a specific type of semantic unit. By interrelating several KGBBs, one can specify a KGBB-driven FAIREr knowledge graph. Besides implementing semantic units, the KGBB Framework clearly distinguishes and decouples an internal in-memory data model from data storage, data display, and data access/export models. We argue that this decoupling is essential for solving many problems of knowledge management systems. We discuss the architecture of the KGBB Framework as we envision it, comprising (i) an openly accessible KGBB-Repository for different types of KGBBs, (ii) a KGBB-Engine for managing and operating FAIREr knowledge graphs (including automatic provenance tracking, editing changelog, and versioning of semantic units); (iii) a repository for KGBB-Functions; (iv) a low-code KGBB-Editor with which domain experts can create new KGBBs and specify their own FAIREr knowledge graph without having to think about semantic modelling. We conclude with discussing the nine challenges and how the KGBB Framework provides solutions for the issues they raise. While most of what we discuss here is entirely conceptual, we can point to two prototypes that demonstrate the principle feasibility of using semantic units and KGBBs to manage and structure knowledge graphs.


翻译:知识图谱和本体提供了有希望的技术解决方案来实现数据和元数据的FAIR原则(可发现、可访问、可互操作和可重用)。然而,它们也具有自身的挑战。本文讨论了九个这样的挑战,与认知互操作性和特定的FAIRE原则(FAIR + Explorability raised)相关联,这些挑战无法满足这些原则。我们介绍了一个易于使用的开源知识图谱框架,该框架基于知识图谱构建模块(KGBB)。 KGBB是用于知识处理的小型信息模块,每个模块都基于特定类型的语义单元。通过相互关联多个KGBB,可以指定基于KGBB的FAIREr知识图谱。除了实现语义单元之外,KGBB框架还清楚地区分并解耦了内部内存数据模型、数据存储、数据显示和数据访问/导出模型。我们认为,这种解耦对于解决许多知识管理系统的问题至关重要。我们讨论了KGBB框架的架构,包括(i)用于不同类型的KGBB的开放访问KGBB存储库,(ii)用于管理和操作FAIREr知识图谱(包括自动溯源跟踪、编辑更改日志和语义单元版本控制)的KGBB引擎;(iii)KGBB函数存储库;(iv)低代码KGBB编辑器,该编辑器使领域专家可以创建新的KGBB并指定自己的FAIREr知识图谱,而无需考虑语义建模。我们最后讨论了九个挑战以及KGBB框架如何为其提出的问题提供解决方案。虽然我们讨论的大部分内容完全是概念性的,但我们可以指向两个原型,这些原型证明了使用语义单元和KGBB来管理和结构化知识图谱的基本可行性。

0
下载
关闭预览

相关内容

【2023新书】构建知识图谱:从业者指南,600页pdf
专知会员服务
175+阅读 · 2023年5月23日
【2022新书】基于概率知识系统的知识集成方法,203页pdf
专知会员服务
50+阅读 · 2022年12月28日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
81+阅读 · 2020年1月13日
使用 GraphQL 和 Ballerina 操作多个数据源
InfoQ
0+阅读 · 2022年7月21日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【知识图谱】中医临床知识图谱的构建与应用
产业智能官
60+阅读 · 2017年12月18日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员