In this paper, we investigate domain adaptation for low-resource Automatic Speech Recognition (ASR) of target-domain data, when a well-trained ASR model trained with a large dataset is available. We argue that in the encoder-decoder framework, the decoder of the well-trained ASR model is largely tuned towards the source-domain, hurting the performance of target-domain models in vanilla transfer-learning. On the other hand, the encoder layers of the well-trained ASR model mostly capture the acoustic characteristics. We, therefore, propose to use the embeddings tapped from these encoder layers as features for a downstream Conformer target-domain model and show that they provide significant improvements. We do ablation studies on which encoder layer is optimal to tap the embeddings, as well as the effect of freezing or updating the well-trained ASR model's encoder layers. We further show that applying Spectral Augmentation (SpecAug) on the proposed features (this is in addition to default SpecAug on input spectral features) provides a further improvement on the target-domain performance. For the LibriSpeech-100-clean data as target-domain and SPGI-5000 as a well-trained model, we get 30% relative improvement over baseline. Similarly, with WSJ data as target-domain and LibriSpeech-960 as a well-trained model, we get 50% relative improvement over baseline.


翻译:在本文中,我们调查了目标域数据中低资源自动语音识别(ASR)的域适应情况,当具备了受过训练的大型数据集的低资源自动语音识别(ASR)数据时,我们调查了目标域数据中的低资源自动语音识别(ASR)的域适应情况。我们争辩说,在经过良好训练的 ASR 模型的解码器框架框架里,经过良好训练的 ASR 模型的解码器基本上调整到源域,从而损害到香草转移学习中接受良好训练的ASR 模型的性能。另一方面,经过良好训练的 ASR 模型的编码器层主要捕捉到声学特性。因此,我们提议使用从这些编码层中挖掘出来的嵌入的ASR 模型作为下游 Consuder 目标域模型的特征,并显示它们提供了显著的改进。我们做了关于哪些编码器模型层最优化嵌入嵌入的源代码-代码-代码模型层,以及冻结或更新经过良好训练的ASR 模型-LI-LIG 的相对性数据性改进。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员