This paper develops a nonparametric framework for identifying and estimating spatial boundaries of treatment effects in settings with geographic spillovers. While atmospheric dispersion theory predicts exponential decay of pollution under idealized assumptions, these assumptions -- steady winds, homogeneous atmospheres, flat terrain -- are systematically violated in practice. I establish nonparametric identification of spatial boundaries under weak smoothness and monotonicity conditions, propose a kernel-based estimator with data-driven bandwidth selection, and derive asymptotic theory for inference. Using 42 million satellite observations of NO$_2$ concentrations near coal plants (2019-2021), I find that nonparametric kernel regression reduces prediction errors by 1.0 percentage point on average compared to parametric exponential decay assumptions, with largest improvements at policy-relevant distances: 2.8 percentage points at 10 km (near-source impacts) and 3.7 percentage points at 100 km (long-range transport). Parametric methods systematically underestimate near-source concentrations while overestimating long-range decay. The COVID-19 pandemic provides a natural experiment validating the framework's temporal sensitivity: NO$_2$ concentrations dropped 4.6\% in 2020, then recovered 5.7\% in 2021. These results demonstrate that flexible, data-driven spatial methods substantially outperform restrictive parametric assumptions in environmental policy applications.


翻译:本文针对存在地理溢出效应的场景,开发了一种用于识别和估计处理效应空间边界的非参数框架。尽管大气扩散理论在理想化假设下预测污染呈指数衰减,但这些假设——稳定风场、均匀大气、平坦地形——在实践中被系统性违背。本文在较弱的平滑性和单调性条件下建立了空间边界的非参数识别条件,提出了一种采用数据驱动带宽选择的核估计方法,并推导了用于统计推断的渐近理论。利用燃煤电厂附近4200万次NO$_2$浓度卫星观测数据(2019-2021年),研究发现:与参数化的指数衰减假设相比,非参数核回归平均降低预测误差1.0个百分点,在政策相关距离上改善最为显著:10公里处(近源影响)降低2.8个百分点,100公里处(远距离传输)降低3.7个百分点。参数化方法系统性低估近源浓度,同时高估远距离衰减程度。COVID-19大流行为验证框架的时间敏感性提供了自然实验:NO$_2$浓度在2020年下降4.6%,随后在2021年回升5.7%。这些结果表明,在环境政策应用中,灵活的数据驱动空间方法显著优于限制性参数假设。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员