The following learning problem arises naturally in various applications: Given a finite sample from a categorical or count time series, can we learn a function of the sample that (nearly) maximizes the probability of correctly guessing the values of a given portion of the data using the values from the remaining parts? Unlike classical approaches in statistical inference, our approach avoids explicitly estimating the conditional probabilities. We propose a non-parametric guessing function with a learning rate independent of the alphabet size. Our analysis focuses on a broad class of time series models that encompasses finite-order Markov chains, some hidden Markov chains, Poisson regression for count processes, and one-dimensional Gibbs measures. We provide a margin condition that controls the rate of convergence for the risk. Additionally, we establish a minimax lower bound for the convergence rate of the risk associated with our guessing problem. This lower bound matches the upper bound achieved by our estimator up to a logarithmic factor, demonstrating its near-optimality.


翻译:以下学习问题在各类应用中自然产生:给定分类或计数时间序列的有限样本,我们能否从样本中学习一个函数,使得在利用其余部分数据值的条件下,(近似)最大化正确猜测给定部分数据值的概率?与统计推断中的经典方法不同,我们的方法避免显式估计条件概率。我们提出了一种非参数猜测函数,其学习率与字母表大小无关。我们的分析聚焦于一类广泛的时间序列模型,涵盖有限阶马尔可夫链、部分隐马尔可夫链、计数过程的泊松回归以及一维吉布斯测度。我们提供了一个控制风险收敛速率的边界条件。此外,针对我们猜测问题相关风险的收敛速率,我们建立了极小极大下界。该下界与我们的估计量所达到的上界之间仅相差一个对数因子,从而证明了其近乎最优性。

0
下载
关闭预览

相关内容

Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.
abc.xyz/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员