The following learning problem arises naturally in various applications: Given a finite sample from a categorical or count time series, can we learn a function of the sample that (nearly) maximizes the probability of correctly guessing the values of a given portion of the data using the values from the remaining parts? Unlike classical approaches in statistical inference, our approach avoids explicitly estimating the conditional probabilities. We propose a non-parametric guessing function with a learning rate independent of the alphabet size. Our analysis focuses on a broad class of time series models that encompasses finite-order Markov chains, some hidden Markov chains, Poisson regression for count processes, and one-dimensional Gibbs measures. We provide a margin condition that controls the rate of convergence for the risk. Additionally, we establish a minimax lower bound for the convergence rate of the risk associated with our guessing problem. This lower bound matches the upper bound achieved by our estimator up to a logarithmic factor, demonstrating its near-optimality.
翻译:以下学习问题在各类应用中自然产生:给定分类或计数时间序列的有限样本,我们能否从样本中学习一个函数,使得在利用其余部分数据值的条件下,(近似)最大化正确猜测给定部分数据值的概率?与统计推断中的经典方法不同,我们的方法避免显式估计条件概率。我们提出了一种非参数猜测函数,其学习率与字母表大小无关。我们的分析聚焦于一类广泛的时间序列模型,涵盖有限阶马尔可夫链、部分隐马尔可夫链、计数过程的泊松回归以及一维吉布斯测度。我们提供了一个控制风险收敛速率的边界条件。此外,针对我们猜测问题相关风险的收敛速率,我们建立了极小极大下界。该下界与我们的估计量所达到的上界之间仅相差一个对数因子,从而证明了其近乎最优性。
Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.https://abc.xyz/