In this paper, we present the problem formulation and methodology framework of Super-Resolution Perception (SRP) on industrial sensor data. Industrial intelligence relies on high-quality industrial sensor data for system control, diagnosis, fault detection, identification, and monitoring. However, the provision of high-quality data may be expensive in some cases. In this paper, we propose a novel machine learning problem -- the SRP problem as reconstructing high-quality data from unsatisfactory sensor data in industrial systems. Advanced generative models are then proposed to solve the SRP problem. This technology makes it possible to empower existing industrial facilities without upgrading existing sensors or deploying additional sensors. We first mathematically formulate the SRP problem under the Maximum a Posteriori (MAP) estimation framework. A case study is then presented, which performs SRP on smart meter data. A network, namely SRPNet, is proposed to generate high-frequency load data from low-frequency data. We further employ a novel recognition-based loss and relativistic adversarial loss to constraint the reconstruction of waveforms explicitly. Experiments demonstrate that our SRP model can reconstruct high-frequency data effectively. Moreover, the reconstructed high-frequency data can lead to better appliance monitoring results without changing the monitoring appliances.


翻译:在本文中,我们介绍了工业传感器数据超分辨率感知(SRP)的问题拟订和方法框架;工业情报依靠高质量的工业感应数据进行系统控制、诊断、发现故障、识别和监测;然而,提供高质量的数据在某些情况下可能很昂贵;在本文中,我们提出一个新的机器学习问题 -- -- 利用工业系统不满意的感应数据重建高频数据,SRP问题;然后提出先进的基因化模型来解决SRP问题;这种技术使得在不更新现有感应器或部署额外感应器的情况下能够赋予现有工业设施权力;我们首先在最大后台(MAP)估计框架下从数学角度拟订SRP问题;然后提出案例研究,在智能仪数据方面进行SRP;提议利用SRPNet网络来从低频数据中产生高频负荷数据;我们进一步采用新的承认性损失和相对性对抗性损失来限制波形的重建。实验表明,我们的SRP模型可以有效地重建高频数据。此外,重建的高频数据监测可导致更好的应用结果,而无需改进应用。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
干货 | 自然语言处理(2)之浅谈向量化与Hash-Trick
机器学习算法与Python学习
3+阅读 · 2017年12月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
干货 | 自然语言处理(2)之浅谈向量化与Hash-Trick
机器学习算法与Python学习
3+阅读 · 2017年12月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员