The article considers the quantitative assessment approach to the innovativeness of different objects. The proposed assessment model is based on the object data retrieval from various databases including the Internet. We present an object linguistic model, the processing technique for the measurement results including the results retrieved from the different search engines, and the evaluating technique of the source credibility. Empirical research of the computational model adequacy includes the acquisition and preprocessing of patent data from different databases and the computation of invention innovativeness values: their novelty and relevance. The experiment results, namely the comparative assessments of innovativeness values and major trends, show the models developed are sufficiently adequate and can be used in further research.


翻译:该条考虑了对不同物体创新的定量评估方法。拟议的评估模式基于从包括因特网在内的各种数据库检索物体数据;我们提出了一个对象语言模型,测量结果的处理技术,包括从不同搜索引擎检索的结果,以及源可信度的评价技术;对计算模型是否充分的经验研究包括从不同数据库获取和预先处理专利数据,以及创新价值的计算:其新颖性和相关性;实验结果,即对创新价值和主要趋势的比较评估,表明所开发的模式足够充分,可用于进一步研究。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
9+阅读 · 2018年5月22日
Arxiv
4+阅读 · 2018年5月14日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
9+阅读 · 2018年5月22日
Arxiv
4+阅读 · 2018年5月14日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员