We study the design of embeddings into Euclidean space with outliers. Given a metric space $(X,d)$ and an integer $k$, the goal is to embed all but $k$ points in $X$ (called the "outliers") into $\ell_2$ with the smallest possible distortion $c$. Finding the optimal distortion $c$ for a given outlier set size $k$, or alternately the smallest $k$ for a given target distortion $c$ are both NP-hard problems. In fact, it is UGC-hard to approximate $k$ to within a factor smaller than $2$ even when the metric sans outliers is isometrically embeddable into $\ell_2$. We consider bi-criteria approximations. Our main result is a polynomial time algorithm that approximates the outlier set size to within an $O(\log^4 k)$ factor and the distortion to within a constant factor. The main technical component in our result is an approach for constructing a composition of two given embeddings from subsets of $X$ into $\ell_2$ which inherits the distortions of each to within small multiplicative factors. Specifically, given a low $c_S$ distortion embedding from $S\subset X$ into $\ell_2$ and a high(er) $c_X$ distortion embedding from the entire set $X$ into $\ell_2$, we construct a single embedding that achieves the same distortion $c_S$ over pairs of points in $S$ and an expansion of at most $O(\log k)\cdot c_X$ over the remaining pairs of points, where $k=|X\setminus S|$. Our composition theorem extends to embeddings into arbitrary $\ell_p$ metrics for $p\ge 1$, and may be of independent interest. While unions of embeddings over disjoint sets have been studied previously, to our knowledge, this is the first work to consider compositions of nested embeddings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员