In the present work, we investigate a cut finite element method for the parameterized system of second-order equations stemming from the splitting approach of a fourth order nonlinear geometrical PDE, namely the Cahn-Hilliard system. We manage to tackle the instability issues of such methods whenever strong nonlinearities appear and to utilize their flexibility of the fixed background geometry -- and mesh -- characteristic, through which, one can avoid e.g. in parametrized geometries the remeshing on the full order level, as well as, transformations to reference geometries on the reduced level. As a final goal, we manage to find an efficient global, concerning the geometrical manifold, and independent of geometrical changes, reduced order basis. The POD-Galerkin approach exhibits its strength even with pseudo-random discontinuous initial data verified by numerical experiments.
翻译:在目前的工作中,我们调查从第四顺序非线性几何式PDE(Cahn-Hilliard)的分拆法中产生的二级方程式参数化系统参数化参数化的削减有限要素方法,即Cahn-Hilliard系统。当出现强非线性时,我们设法解决这种方法的不稳定问题,并利用其固定背景几何 -- -- 和网状 -- 特征的灵活性,通过这种方法,人们可以避免,例如,在全顺序水平重现的半称性几何配对称中,以及在降低水平上对参考几何形的转换。作为最终目标,我们设法找到一个高效的全球性,涉及几何性方形多元,独立于几何性变化、缩小顺序基础。POD-Galerkin方法显示其强度,即使经数字实验核实的伪随机性初始数据不连贯。