The supermarket model refers to a system with a large number of queues, where new customers choose d queues at random and join the one with the fewest customers. This model demonstrates the power of even small amounts of choice, as compared to simply joining a queue chosen uniformly at random, for load balancing systems. In this work we perform simulation-based studies to consider variations where service times for a customer are predicted, as might be done in modern settings using machine learning techniques or related mechanisms. Our primary takeaway is that using even seemingly weak predictions of service times can yield significant benefits over blind First In First Out queueing in this context. However, some care must be taken when using predicted service time information to both choose a queue and order elements for service within a queue; while in many cases using the information for both choosing and ordering is beneficial, in many of our simulation settings we find that simply using the number of jobs to choose a queue is better when using predicted service times to order jobs in a queue. In our simulations, we evaluate both synthetic and real-world workloads--in the latter, service times are predicted by machine learning. Our results provide practical guidance for the design of real-world systems; moreover, we leave many natural theoretical open questions for future work, validating their relevance to real-world situations.
翻译:超市模式是指一个数量众多的排队的系统, 新的客户可以随机选择排队, 并与最少数的客户一起随机选择排队。 这个模式展示了即使选择数量很小的选择权, 而不是简单地加入一个统一随机选择的队列, 用于负载平衡系统。 在这项工作中, 我们进行模拟研究, 以考虑用户服务时间的变异性, 在现代环境下, 使用机器学习技术或相关机制来预测客户的服务时间。 我们的主要取舍是, 使用甚至看似微弱的服务时间预测, 能够比盲人先排队带来显著的好处。 但是, 在使用预测的服务时间信息选择队列并订购队列内服务元素时, 也必须小心谨慎。 在很多情况下, 使用信息来选择和订购都是有益的。 在我们的许多模拟环境中, 我们发现, 仅仅使用工作数量来选择队列队列的时间, 当使用预测服务时间来排列队列时会更好。 在我们的模拟中, 我们评估合成和现实世界的工作量- 后期, 服务时间都是通过机器学习来预测的。 我们的结果为现实世界的设计提供了实际的相关性指导; 此外, 我们为现实世界的设计- 将许多的系统的设计提供了正确的问题。