The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are still several open concerns. First, even when applied at a higher level of abstraction, locking has significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip's specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. The framework supports different meta-heuristics to explore the design space and to select points to lock automatically. Our method optimizes a given security metric better than topological locking: 1) we always identify a valid solution that optimizes the security metric; 2) we minimize the number of bits used for locking; and 3) we make a better use of hardware resources.


翻译:电子供应链的全球化需要有效的方法来阻止逆向工程和IP盗窃。逻辑锁定是一个很有希望的解决方案,但仍存在若干尚未解决的关切问题。 首先,即便在更高的抽象水平上应用,锁定也具有很大的管理费用,而没有改进安全度量。 其次,优化安全度量标准是依赖应用的,设计者必须评估和比较替代解决方案。我们提出了一个框架,以便在IP核心的高级合成(HLS)中优化行为锁定的使用。我们的方法是按芯片的规格(在HLS之前)操作,它与所有 HLS 工具兼容,补充工业的 EDA 流。这个框架支持探索设计空间和选择自动锁定点的不同元性理论。我们的方法优化了比顶层锁更好的特定安全度度度量标准:1 我们总是确定一个有效的解决方案,以优化安全度量值; 2)我们尽量减少用于锁定的比特数; 和 3)我们更好地利用硬件资源。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
53+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
53+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员