Accurate detection of a drivers attention state can help develop assistive technologies that respond to unexpected hazards in real time and therefore improve road safety. This study compares the performance of several attention classifiers trained on participants brain activity. Participants performed a driving task in an immersive simulator where the car randomly deviated from the cruising lane. They had to correct the deviation and their response time was considered as an indicator of attention level. Participants repeated the task in two sessions; in one session they received kinesthetic feedback and in another session no feedback. Using their EEG signals, we trained three attention classifiers; a support vector machine (SVM) using EEG spectral band powers, and a Convolutional Neural Network (CNN) using either spectral features or the raw EEG data. Our results indicated that the CNN model trained on raw EEG data obtained under kinesthetic feedback achieved the highest accuracy (89%). While using a participants own brain activity to train the model resulted in the best performances, inter-subject transfer learning still performed high (75%), showing promise for calibration-free Brain-Computer Interface (BCI) systems. Our findings show that CNN and raw EEG signals can be employed for effective training of a passive BCI for real-time attention classification.
翻译:对驱动器注意状态的准确检测有助于开发实时应对意外危害的辅助技术,从而改善道路安全。本研究比较了接受过参与者大脑活动培训的若干关注分类人员的表现。参与者在汽车随机偏离游车道的地方,在一个浸泡式模拟器中执行了一项驾驶任务。他们必须纠正偏差,他们的响应时间被认为是关注水平的一个指标。参与者在两场会议上重复了这项任务;在另一场会议上,他们收到了感应反馈,在另一场会议上没有反馈。我们用他们的EEEEG信号培训了三名关注分类人员;使用EEEG光谱带功能和光谱或原始 EEEG数据,一个支持矢量机(SVM),以及一个革命神经网络(CNN),使用光谱特征或原始 EEG数据。我们的结果表明,在动感应反馈下获得的原始EEEEEEG数据培训的有最高精确度(89 % ) 。参与者利用自己的脑活动来培训模型,取得了最佳的性能,但对象之间转移学习率仍然很高(75%),展示了无校准性脑合成IC-Computer接口的希望得到有效的E系统的有效信号。我们的调查结果显示的是,可以进行真正的光学-E-E-EG的实时的实时的实时的注意。