Algorithms for finding the sink in Unique Sink Orientations (USOs) of the hypercube can be used to solve many algebraic and geometric problems, most importantly including the P-Matrix Linear Complementarity Problem and Linear Programming. The realizable USOs are those that arise from the reductions of these problems to the USO sink-finding problem. Finding the sink of realizable USOs is thus highly practically relevant, yet it is unknown whether realizability can be exploited algorithmically to find the sink more quickly. However, all (non-trivial) known unconditional lower bounds for sink-finding make use of USOs that are provably not realizable. This indicates that the sink-finding problem might indeed be strictly easier on realizable USOs. In this paper we show that this is true for a subclass of all USOs. We consider the class of Matou\v{s}ek-type USOs, which are a translation of Matou\v{s}ek's LP-type problems into the language of USOs. We show a query complexity gap between sink-finding in all, and sink-finding in only the realizable $n$-dimensional Matou\v{s}ek-type USOs. We provide concrete deterministic algorithms and lower bounds for both cases, and show that in the realizable case $O(log^2 n)$ vertex evaluation queries suffice, while in general exactly $n$ queries are needed. The Matou\v{s}ek-type USOs are the first USO class found to admit such a gap.
翻译:找到超立方的Unique Sink方向(USO {USO {USO ) 的水槽的算法值可以用来解决许多测深和几何问题,其中最重要的是P-Matrix 线性互补问题和线性编程。 能够实现的USO 是这些问题减少到USO 水槽调查问题的结果。 找到可实现的USO 的水槽因此具有高度的实际意义, 但还不知道能否从逻辑上利用真实性来更快地找到水槽。 然而,所有已知的(非三维的) 水槽探测无条件的下层线都使用了无法实现的USO 。 这表明, 水槽调查问题可能确实在可实现的USO 上更加容易。 在本文中, 对所有USO 的子类 。 我们认为, Matouv 美元 类的 数据型 正在将LP 类型 的解析问题转换成 USO2 和 美元 美元 的解析中, 我们的解析式的解析式的解算系统 。