Machine prediction algorithms (e.g., binary classifiers) often are adopted on the basis of claimed performance using classic metrics such as sensitivity and predictive value. However, classifier performance depends heavily upon the context (workflow) in which the classifier operates. Classic metrics do not reflect the realized utility of a predictor unless certain implicit assumptions are met, and these assumptions cannot be met in many common clinical scenarios. This often results in suboptimal implementations and in disappointment when expected outcomes are not achieved. One common failure mode for classic metrics arises when multiple predictions can be made for the same event, particularly when redundant true positive predictions produce little additional value. This describes many clinical alerting systems. We explain why classic metrics cannot correctly represent predictor performance in such contexts, and introduce an improved performance assessment technique using utility functions to score predictions based on their utility in a specific workflow context. The resulting utility metrics (u-metrics) explicitly account for the effects of temporal relationships on prediction utility. Compared to traditional measures, u-metrics more accurately reflect the real world costs and benefits of a predictor operating in a live clinical context. The improvement can be significant. We also describe a formal approach to snoozing, a mitigation strategy in which some predictions are suppressed to improve predictor performance by reducing false positives while retaining event capture. Snoozing is especially useful for predictors that generate interruptive alarms. U-metrics correctly measure and predict the performance benefits of snoozing, whereas traditional metrics do not.


翻译:机算预测算法(例如二进制分类器)往往根据使用敏感度和预测值等典型指标声称的绩效而采用。然而,分类性能在很大程度上取决于分类者操作的背景(工作流程),典型性能没有反映预测者的实际效用,除非某些隐含假设得到满足,这些假设在许多常见临床假设中无法实现。这往往导致执行不最优,在未能实现预期结果时造成失望。当对同一事件进行多重预测时,典型性能标准出现一种常见的失败模式,特别是当冗余真实预测产生很少的传统价值时。这描述了许多临床警报系统。我们解释了为何典型性能指标不能正确反映这种情况下的预测或业绩,并引入一种改进性能评估技术,利用实用性功能根据特定工作流程中的效用进行预测。由此产生的效用度量度(度)明确说明时间关系对预测作用的效用。与传统测量相比,u-度更准确地反映真实的世界成本和在现实性积极性预测中运行的效益,我们也可以通过实际性测测测测测结果,因此,对正变的预测性性预测性预测方法进行显著的改善。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员