Mainstream solutions to Sequential Recommendation (SR) represent items with fixed vectors. These vectors have limited capability in capturing items' latent aspects and users' diverse preferences. As a new generative paradigm, Diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this paper, we make the very first attempt to adapt Diffusion model to SR and propose DiffuRec, for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect user's multiple interests and item's various aspects adaptively. In diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterwards, the item representation is fed into an Approximator for target item representation reconstruction. In reversion phase, based on user's historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin.


翻译:主流的序列推荐方案将项目表示为固定向量,这些向量在捕捉项目的潜在方面和用户的多样化偏好方面有限。扩散模型作为一种新的生成范式,在计算机视觉和自然语言处理等领域已经取得了出色的表现。据我们所知,其在表示生成方面的独特优势非常适合序列推荐问题设置。在本文中,我们首次尝试将扩散模型应用于序列推荐,并提出了 DiffuRec 用于项目表示构建和不确定性注入。相比将项目表示为固定向量的传统方法,我们在 DiffuRec 中将其表示为分布,以自适应方式反映用户的多个兴趣和项目的各个方面。在扩散阶段,通过添加噪声,DiffuRec 将目标项目嵌入的向量变为高斯分布,进一步用于生成序列项目分布表示和注入不确定性。然后将项目表示馈送到目标项目表示重构的 Approximator。在逆向阶段,基于用户的历史交互行为,我们将高斯噪声反转为目标项目表示,然后应用舍入操作以进行目标项目预测。对四个数据集的实验表明,DiffuRec 的性能优于强基线方法。

0
下载
关闭预览

相关内容

【KDD2023】学习语言表示用于序列推荐
专知会员服务
11+阅读 · 2023年5月27日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【CIKM2022】基于双向Transformers对比学习的序列推荐
专知会员服务
21+阅读 · 2022年8月10日
专知会员服务
88+阅读 · 2020年1月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员