The improvement of mortality projection is a pivotal topic in the diverse branches related to insurance, demography, and public policy. Motivated by the thread of Lee-Carter related models, we propose a Bayesian model to estimate and predict mortality rates for multi-population. This new model features in information borrowing among populations and properly reflecting variations of data. It also provides a solution to a long-time overlooked problem: model selection for dependence structures of population-specific time parameters. By introducing a Dirac spike function, simultaneous model selection and estimation for population-specific time effects can be achieved without much extra computation cost. We use the Japanese mortality data from Human Mortality Database to illustrate the desirable properties of our model.
翻译:死亡率预测的改进是保险、人口学和公共政策等不同部门的关键议题。在Lee-Carter相关模型的推动下,我们提出了一种巴伊西亚模型,用于估算和预测多种人口的死亡率。这种新的模型在人口信息借入和适当反映数据的变化方面具有特征。它还为长期被忽视的问题提供了解决办法:为人口特定时间参数的依赖结构选择模式。通过引入Dirac峰值功能,可以在不花费大量额外计算费用的情况下实现人口特定时间效应的同步模型选择和估算。我们利用人口死亡数据库的日本死亡率数据来说明我们模型的适宜特性。