In a temporal network with discrete time-labels on its edges, entities and information can only "flow" along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal (resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe et al., JCSS, 2002], the individual time-labeled edges remain undirected: an edge $e=\{u,v\}$ with time-label $t$ specifies that "$u$ communicates with $v$ at time $t$". This is a symmetric relation between $u$ and $v$, and it can be interpreted that the information can flow in either direction. In this paper we make a first attempt to understand how the direction of information flow on one edge can impact the direction of information flow on other edges. More specifically, we introduce the notion of a temporal transitive orientation and we systematically investigate its algorithmic behavior in various situations. An orientation of a temporal graph is called temporally transitive if, whenever $u$ has a directed edge towards $v$ with time-label $t_1$ and $v$ has a directed edge towards $w$ with time-label $t_2\geq t_1$, then $u$ also has a directed edge towards $w$ with some time-label $t_3\geq t_2$. If we just demand that this implication holds whenever $t_2 > t_1$, the orientation is called strictly temporally transitive. Our main result is a conceptually simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given temporal graph $\mathcal{G}$ is transitively orientable. In wide contrast we prove that, surprisingly, it is NP-hard to recognize whether $\mathcal{G}$ is strictly transitively orientable. Additionally we introduce and investigate further related problems to temporal transitivity, notably among them the temporal transitive completion problem, for which we prove both algorithmic and hardness results.
翻译:在一个在边缘、实体和信息上有离散时间标签的时空网络中, 实体和信息只能沿时间标签不下降( 不断增长) 的边缘序列“ 流动 ” 。 然而, 在时间网络[ Kempe 等、 JCSS, 2002] 的模型中, 单个时间标签边缘仍然没有方向 : 美元, 美元, 美元, 时间标签美元 美元, 指定“ 美元在时间上与美元沟通 ” 。 这是美元和 美元之间的一个对称方向( 不断增长) 。 在时间网络中, 美元和 美元之间的对等方向 。 在一个边缘的信息流动方向如何影响信息流向其它边缘。 更具体地说, 我们引入了时间过渡方向的概念, 我们系统调查其在不同情况下的算法行为。 时间图形的定位被称作时间跨值 美元, 当美元 和美元 美元 美元 的对时间平面结果显示, 美元是直方向, 当美元, 当美元 美元 直方向 直达 美元 方向 方向, 美元 方向 方向 方向 方向 方向是 美元 方向 美元 方向 方向 方向 方向 方向 方向 方向 。