Facial expression recognition (FER) must remain robust under both cultural variation and perceptually degraded visual conditions, yet most existing evaluations assume homogeneous data and high-quality imagery. We introduce an agent-based, streaming benchmark that reveals how cross-cultural composition and progressive blurring interact to shape face recognition robustness. Each agent operates in a frozen CLIP feature space with a lightweight residual adapter trained online at sigma=0 and fixed during testing. Agents move and interact on a 5x5 lattice, while the environment provides inputs with sigma-scheduled Gaussian blur. We examine monocultural populations (Western-only, Asian-only) and mixed environments with balanced (5/5) and imbalanced (8/2, 2/8) compositions, as well as different spatial contact structures. Results show clear asymmetric degradation curves between cultural groups: JAFFE (Asian) populations maintain higher performance at low blur but exhibit sharper drops at intermediate stages, whereas KDEF (Western) populations degrade more uniformly. Mixed populations exhibit intermediate patterns, with balanced mixtures mitigating early degradation, but imbalanced settings amplify majority-group weaknesses under high blur. These findings quantify how cultural composition and interaction structure influence the robustness of FER as perceptual conditions deteriorate.
翻译:暂无翻译