Adversarial attacks have shown the vulnerability of machine learning models, however, it is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data. Most previous approaches conduct attacks with the atomic \textit{replacement} operation, which usually leads to fixed-length adversarial examples and therefore limits the exploration on the decision space. In this paper, we propose variable-length textual adversarial attacks~(VL-Attack) and integrate three atomic operations, namely \textit{insertion}, \textit{deletion} and \textit{replacement}, into a unified framework, by introducing and manipulating a special \textit{blank} token while attacking. In this way, our approach is able to more comprehensively find adversarial examples around the decision boundary and effectively conduct adversarial attacks. Specifically, our method drops the accuracy of IMDB classification by $96\%$ with only editing $1.3\%$ tokens while attacking a pre-trained BERT model. In addition, fine-tuning the victim model with generated adversarial samples can improve the robustness of the model without hurting the performance, especially for length-sensitive models. On the task of non-autoregressive machine translation, our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.


翻译:Adversarial攻击表明机器学习模式的脆弱性,然而,由于数据的离散性,对自然语言处理任务进行文字对抗性攻击是非三重性的,因为数据离散。大多数以往的做法都是以原子(textit{blank})操作进行攻击,通常导致固定长度的对抗性实例,从而限制对决定空间的探索。在本文中,我们提议多长的文字对抗性攻击~(VL-Attack),并将三种原子行动,即47{textit{delion},\textit{deletion}和\textit{reit{replace}纳入一个统一的框架,方法是在攻击的同时采用和操纵一种特殊的(textit{blank})标志。这样,我们的方法能够更全面地找到围绕决定边界的对抗性例子,从而有效地进行对抗性攻击。具体地说,我们的方法将IMDB的分类的准确性降低了96美元,只编辑了1.3美元的符号,同时攻击了事先训练过的BERT的模型。此外,对受害者翻译模型进行微调,特别使B-Rial-L的模型更能改进。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员