The rapid growth of online advertising has fueled the growth of ad-blocking software, such as new ad-blocking and privacy-oriented browsers or browser extensions. In response, both ad publishers and ad networks are constantly trying to pursue new strategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push technology enabled by modern web browsers. As web push notifications (WPNs) are relatively new, their role in ad delivery has not been yet studied in depth. Furthermore, it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In this paper, we aim to fill this gap. Specifically, we propose a system called PushAdMiner that is dedicated to (1) automatically registering for and collecting a large number of web-based push notifications from publisher websites, (2) finding WPN-based ads among these notifications, and (3) discovering malicious WPN-based ad campaigns. Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of different websites. Among these, our system identified 572 WPN ad campaigns, for a total of 5,143 WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51% of all WPN ads we collected are malicious, and that traditional ad-blockers and malicious URL filters are remarkably ineffective against WPN-based malicious ads, leaving a significant abuse vector unchecked.


翻译:在线广告的迅速增长刺激了阻塞软件的增长,例如新的阻塞广告和以隐私为导向的浏览器或浏览器扩展。作为回应,广告出版商和广告网络都在不断寻求新的战略以保持收入。为此,广告网络已开始利用现代网络浏览器所促成的网络推推推技术。由于网络推动通知(WPN)相对较新,因此尚未深入研究其在代理交付方面的作用。此外,尚不清楚WPN广告在多大程度上被滥用于错误广告(例如,提供恶意广告)的恶意广告(例如,发送恶意广告)。我们在本文件中,我们的目标是填补这一空白。我们提议一个称为PushAdMiner的系统,专门(1) 自动登记和收集由现代网络浏览器浏览的大批网络推推推推技术。(2) 在这些通知中找到基于WPN的广告,(3) 发现恶意的WPN广告运动。我们通过访问数千个不同的网站,收集并分析了21 541 WPN的服务器信息。其中,我们的系统查明了572个不透明的WPN(WPN)传统网络是我们所收集的不透明的网络。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
8+阅读 · 2019年2月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
3+阅读 · 2018年4月5日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员