Selecting radiology examination protocol is a repetitive, and time-consuming process. In this paper, we present a deep learning approach to automatically assign protocols to computer tomography examinations, by pre-training a domain-specific BERT model ($BERT_{rad}$). To handle the high data imbalance across exam protocols, we used a knowledge distillation approach that up-sampled the minority classes through data augmentation. We compared classification performance of the described approach with the statistical n-gram models using Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Random Forest (RF) classifiers, as well as the Google's $BERT_{base}$ model. SVM, GBM and RF achieved macro-averaged F1 scores of 0.45, 0.45, and 0.6 while $BERT_{base}$ and $BERT_{rad}$ achieved 0.61 and 0.63. Knowledge distillation improved overall performance on the minority classes, achieving a F1 score of 0.66.
翻译:选择放射检查程序是一个重复和耗时的过程。 在本文中,我们提出了一个深层次的学习方法,通过对特定域的BERT模型进行预培训,自动为计算机摄影检查指定协议。为了处理各考试程序之间数据高度不平衡的问题,我们采用了知识蒸馏方法,通过数据扩增对少数群体类别进行取样。我们将所述方法的分类性能与使用支持矢量机(SVM)、高级促动机(GBM)和随机森林分类器(Roming Forest)的统计正克模型以及谷歌的$BERT*base}模型进行比较。SVM、GBM和RF达到了0.45、0.45和0.6的宏观平均F1分,而$BERT ⁇ base}和$BERT ⁇ rad}则实现了0.61和0.63。 知识蒸馏提高了少数群体类别的总体性能,实现了0.66的F1分。