This article proposes a powerful scheme to monitor a large number of categorical data streams with heterogeneous parameters or nature. The data streams considered may be either nominal with a number of attribute levels or ordinal with some natural order among their attribute levels, such as good, marginal, and bad. For an ordinal data stream, it is assumed that there is a corresponding latent continuous data stream determining it. Furthermore, different data streams may have different number of attribute levels and different values of level probabilities. Due to high dimensionality, traditional multivariate categorical control charts cannot be applied. Here we integrate the local exponentially weighted likelihood ratio test statistics from each single stream, regardless of nominal or ordinal, into a powerful goodness-of-fit test by some normalization procedure. A global monitoring statistic is proposed ultimately. Simulation results have demonstrated the robustness and efficiency of our method.
翻译:本条提出一个强有力的计划,以监测大量具有不同参数或性质的绝对数据流。考虑的数据流要么是带有若干属性水平的名义数据,要么是与其属性水平(如良好、边际和坏等)之间某种自然顺序的正态数据流。对于一个正态数据流,假定有一个相应的潜在连续数据流来决定它。此外,不同的数据流可能有不同数量的属性水平和不同水平概率值。由于高度的维度,传统的多变量绝对控制图表无法应用。在这里,我们将每个单一流的本地指数加权概率比率测试统计数据(不论名义或正态)纳入某种正常化程序的强大、合宜的测试中。最终提出了全球监测统计数据。模拟结果显示了我们方法的稳健性和效率。