In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this model has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. In this work, we present interactive shuffle protocols for stochastic convex optimization. Our optimization protocols rely on a new noninteractive protocol for summing vectors of bounded $\ell_2$ norm. By combining this sum subroutine with techniques including mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterov's smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.
翻译:在洗牌隐私中,每个用户都会向一个信任的洗发机发送一系列随机化信息, 洗发机随机地随机移动这些信息, 以及由此产生的洗发机收集信件必须满足不同的隐私。 本模型先前的工作主要侧重于协议, 协议使用单轮通信来计算算法原始的算法, 比如手段、 直方图和计数。 在这项工作中, 我们展示了交互式洗发机优化程序 。 我们的优化协议依赖于一个新的非互动协议, 用于调制受约束的 $@ ell_ 2$ 规范的矢量 。 通过将这个总和子路程与包括小型批次梯度梯度下移、 加速梯度下移和 Nestrov 的平滑方法等技术相结合, 我们为大量改进本地模型且有时与中央模型相匹配的convex 损失功能获得损失保证 。