Classifying and resolving coreferences of objects (e.g., product names) and attributes (e.g., product aspects) in opinionated reviews is crucial for improving the opinion mining performance. However, the task is challenging as one often needs to consider domain-specific knowledge (e.g., iPad is a tablet and has aspect resolution) to identify coreferences in opinionated reviews. Also, compiling a handcrafted and curated domain-specific knowledge base for each domain is very time consuming and arduous. This paper proposes an approach to automatically mine and leverage domain-specific knowledge for classifying objects and attribute coreferences. The approach extracts domain-specific knowledge from unlabeled review data and trains a knowledgeaware neural coreference classification model to leverage (useful) domain knowledge together with general commonsense knowledge for the task. Experimental evaluation on realworld datasets involving five domains (product types) shows the effectiveness of the approach.
翻译:在经过深思熟虑的审查中,对对象(例如产品名称)和属性(例如产品方面)进行分类并解决共同参照的问题(例如产品名称)和属性(例如产品方面)对于改进意见采矿业绩至关重要,然而,这一任务具有挑战性,因为人们往往需要考虑具体领域的知识(例如iPad是一个平板电脑,具有分解面),以便确定意见审查中的共参照点。此外,为每个领域编制手工制作和整理的具体域知识库非常费时费力。本文件建议采用一种办法,自动开采和利用特定领域知识对对象进行分类和属性共同参照。该办法从未贴标签的审查数据中提取特定领域的知识,并培训一种知识觉察神经参照分类模式,以便利用(使用)领域知识以及一般常识来完成这项任务。对涉及五个领域(产品类型)的现实世界数据集进行实验性评价,显示了该办法的有效性。