As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by state-of-the-art techniques are inconsistent, unstable, and provide very little insight into their correctness and reliability. In addition, these methods are also computationally inefficient, and require significant hyper-parameter tuning. In this paper, we address the aforementioned challenges by developing a novel Bayesian framework for generating local explanations along with their associated uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and KernelSHAP which output credible intervals for the feature importances, capturing the associated uncertainty. The resulting explanations not only enable us to make concrete inferences about their quality (e.g., there is a 95\% chance that the feature importance lies within the given range), but are also highly consistent and stable. We carry out a detailed theoretical analysis that leverages the aforementioned uncertainty to estimate how many perturbations to sample, and how to sample for faster convergence. This work makes the first attempt at addressing several critical issues with popular explanation methods in one shot, thereby generating consistent, stable, and reliable explanations with guarantees in a computationally efficient manner. Experimental evaluation with multiple real world datasets and user studies demonstrate that the efficacy of the proposed framework.


翻译:由于越来越多地使用黑盒解释来建立高利贷环境中的模型可信度,因此必须确保这些解释准确可靠,然而,先前的工作表明,由最新技术产生的解释前后不一致、不稳定,对正确性和可靠性的洞察力很少;此外,这些方法在计算上也是效率低下,需要大量的超参数调试;在本文件中,我们通过开发一个创新的贝叶西亚框架来应对上述挑战,以产生当地解释及其相关不确定性;我们即时利用这个框架来获取Bayesian版本的LIME和KernelSHAP,这些版本为特征的重要性提供可信的间隔,捕捉相关的不确定性;由此产生的解释不仅使我们能够对其质量作出具体推论(例如,有95 ⁇ 机会其特点重要性在给定范围内),而且非常一致和稳定。我们利用上述不确定性进行详细理论分析,以估计抽样的扰动次数,以及如何抽样更快地汇合。这项工作首次试图用大众解释的方法解决几个关键问题,同时用一种精确的方法对用户进行可靠的分析,从而用一种稳定的方法对数据进行可靠的分析,从而用一种可靠的方法对数据进行稳定地进行精确的实验性分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
学习自然语言处理路线图
专知会员服务
134+阅读 · 2019年9月24日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI产品经理从业指南
产品经理读书会
5+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Deceptive Decision-Making Under Uncertainty
Arxiv
0+阅读 · 2021年9月14日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2020年9月1日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
学习自然语言处理路线图
专知会员服务
134+阅读 · 2019年9月24日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI产品经理从业指南
产品经理读书会
5+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员