When testing for a disease such as COVID-19, the standard method is individual testing: we take a sample from each individual and test these samples separately. An alternative is pooled testing (or "group testing"), where samples are mixed together in different pools, and those pooled samples are tested. When the prevalence of the disease is low and the accuracy of the test is fairly high, pooled testing strategies can be more efficient than individual testing. In this chapter, we discuss the mathematics of pooled testing and its uses during pandemics, in particular the COVID-19 pandemic. We analyse some one- and two-stage pooling strategies under perfect and imperfect tests, and consider the practical issues in the application of such protocols.


翻译:当测试COVID-19等疾病时,标准方法就是个别测试:我们从每个人中抽取样本,并分别测试这些样本;另一种办法是集中测试(或“集体测试”),将样品混放在不同的集合体中,对这些集合体进行测试;当该疾病的流行率较低,测试的准确性相当高时,集合检测战略比个体检测更有效;在本章中,我们讨论集合检测的数学及其在流行病期间的使用,特别是COVID-19大流行期间的使用;我们在完美和不完善的测试中分析一些一阶段和两阶段集合战略,并在应用此类协议时考虑实际问题。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月15日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员