With the ever-increasing dataset sizes, several file formats like Parquet, ORC, and Avro have been developed to store data efficiently and to save network and interconnect bandwidth at the price of additional CPU utilization. However, with the advent of networks supporting 25-100 Gb/s and storage devices delivering 1, 000, 000 reqs/sec the CPU has become the bottleneck, trying to keep up feeding data in and out of these fast devices. The result is that data access libraries executed on single clients are often CPU-bound and cannot utilize the scale-out benefits of distributed storage systems. One attractive solution to this problem is to offload data-reducing processing and filtering tasks to the storage layer. However, modifying legacy storage systems to support compute offloading is often tedious and requires extensive understanding of the internals. Previous approaches re-implemented functionality of data processing frameworks and access library for a particular storage system, a duplication of effort that might have to be repeated for different storage systems. In this paper, we introduce a new design paradigm that allows extending programmable object storage systems to embed existing, widely used data processing frameworks and access libraries into the storage layer with minimal modifications. In this approach data processing frameworks and access libraries can evolve independently from storage systems while leveraging the scale-out and availability properties of distributed storage systems. We present one example implementation of our design paradigm using Ceph, Apache Arrow, and Parquet. We provide a brief performance evaluation of our implementation and discuss key results.


翻译:随着数据集规模的不断增加,已经开发出若干文件格式,如Parquet、ORC和Avro等,以便以更多CPU的利用为代价,高效率地储存数据,节省网络和连接带宽,但随着支持25-100Gb/s的网络的出现,提供1 000 000 000 reqs/sec的存储装置,CPU已成为瓶颈,试图在这些快速装置中不断不断输入数据,结果使单个客户执行的数据存取图书馆经常受CPU约束,无法利用分布式存储系统的扩大效益。 这一问题的一个有吸引力的解决办法是将数据减少处理和过滤任务卸载到存储层。然而,修改遗留存储系统以支持计算机卸载的25-100 Gb/s和储存装置,往往很乏味,需要广泛了解内部情况。 以往的做法是重新实施数据处理框架的功能和进入特定存储系统的存取图书馆,这可能需要为不同的存储系统重复努力。 在本文中,我们引入新的设计模式,允许将可编程的存储器存储系统扩展到将现有的、广泛使用的关键处理框架的存储框架和访问图书馆。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
5+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
5+阅读 · 2019年4月25日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员