Graphically-rich applications such as games are ubiquitous with attractive visual effects of Graphical User Interface (GUI) that offers a bridge between software applications and end-users. However, various types of graphical glitches may arise from such GUI complexity and have become one of the main component of software compatibility issues. Our study on bug reports from game development teams in NetEase Inc. indicates that graphical glitches frequently occur during the GUI rendering and severely degrade the quality of graphically-rich applications such as video games. Existing automated testing techniques for such applications focus mainly on generating various GUI test sequences and check whether the test sequences can cause crashes. These techniques require constant human attention to captures non-crashing bugs such as bugs causing graphical glitches. In this paper, we present the first step in automating the test oracle for detecting non-crashing bugs in graphically-rich applications. Specifically, we propose \texttt{GLIB} based on a code-based data augmentation technique to detect game GUI glitches. We perform an evaluation of \texttt{GLIB} on 20 real-world game apps (with bug reports available) and the result shows that \texttt{GLIB} can achieve 100\% precision and 99.5\% recall in detecting non-crashing bugs such as game GUI glitches. Practical application of \texttt{GLIB} on another 14 real-world games (without bug reports) further demonstrates that \texttt{GLIB} can effectively uncover GUI glitches, with 48 of 53 bugs reported by \texttt{GLIB} having been confirmed and fixed so far.


翻译:图形化的应用程序, 如游戏等, 图形用户界面 { 具有吸引人的视觉效果 { 图形化用户界面 (GUI) 的现有自动测试技术, 重点是生成各种图形化测试序列, 检查测试序列是否会导致崩溃。 然而, 各种类型的图形化小点可能来自图形界面的复杂性, 并已成为软件兼容问题的主要组成部分之一。 我们在 NetEase Inc. 的游戏开发团队的错误报告研究表明, 图形化的图形化小点经常在图形化游戏中出现, 并严重降低像视频游戏这样的图形化应用程序的质量。 用于这些应用程序的现有自动测试技术主要侧重于生成各种图形化用户界面测试序列, 并检查测试序列是否会导致崩溃。 然而, 这些技术需要不断的人类关注来捕捉非崩溃的错误, 例如导致图形化小点的错误。 在本文中, 我们根据基于代码化的数据增强技术, 演示游戏用户界面的系统测试序列技术, 我们用直径{ GLIB} 实时评估, 显示真实的 GLL} 运行结果。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年10月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员