We present deterministic $O(\log^2 \log n)$ time sublinear Massively Parallel Computation (MPC) algorithms for 3-coloring, maximal independent set and maximal matching in trees with $n$ nodes. In accordance with the sublinear MPC regime, our algorithms run on machines that have memory as little as $O(n^\delta)$ for any arbitrary constant $0<\delta<1$. Furthermore, our algorithms use only $O(n)$ global memory. Our main result is the 3-coloring algorithm, which contrasts the probabilistic 4-coloring algorithm of Ghaffari, Grunau and Jin [DISC'20]. The maximal independent set and maximal matching algorithms follow in $O(1)$ time after obtaining the coloring. The key ingredient of our 3-coloring algorithm is an $O(\log^2 \log n)$ time MPC implementation of a variant of the rake-and-compress tree decomposition used by Chang and Pettie [FOCS'17], which is closely related to the $H$-partition by Barenboim and Elkin [PODC'08]. When restricting to trees of constant maximum degree, we bring the runtime down to $O(\log \log n)$.
翻译:根据亚线性MPC制度,我们的算法运行在记忆力小于$O(n ⁇ delta)的机器上,任何任意常数$0 ⁇ delta <1美元。此外,我们的算法只使用美元(n)的全球记忆。我们的主要结果就是3色算法,与加法里、格鲁诺和金[DISC'20]的4色概率算法对比。最大独立算法和最大匹配算法在获得颜色后以美元计。我们的3色算法的关键成分是$O(log%2\log n),时间是MPC执行张和佩蒂尼[FOCS'17] 使用的4色算法变式。最大独立算法和最大匹配算法在获得颜色后以美元为单位。当将恒定的树级限制为“O”和“O”。