Endowing chatbots with a consistent personality plays a vital role for agents to deliver human-like interactions. However, existing personalized approaches commonly generate responses in light of static predefined personas depicted with textual description, which may severely restrict the interactivity of human and the chatbot, especially when the agent needs to answer the query excluded in the predefined personas, which is so-called out-of-predefined persona problem (named OOP for simplicity). To alleviate the problem, in this paper we propose a novel retrieval-to-prediction paradigm consisting of two subcomponents, namely, (1) Persona Retrieval Model (PRM), it retrieves a persona from a global collection based on a Natural Language Inference (NLI) model, the inferred persona is consistent with the predefined personas; and (2) Posterior-scored Transformer (PS-Transformer), it adopts a persona posterior distribution that further considers the actual personas used in the ground response, maximally mitigating the gap between training and inferring. Furthermore, we present a dataset called IT-ConvAI2 that first highlights the OOP problem in personalized dialogue. Extensive experiments on both IT-ConvAI2 and ConvAI2 demonstrate that our proposed model yields considerable improvements in both automatic metrics and human evaluations.
翻译:具有一贯人格的固定聊天室对代理人提供类似人的互动至关重要,然而,现有的个性化做法通常会根据以文字描述描述的静态预先定义的人作出响应,这可能严重限制人类和聊天室的互动性,特别是当代理人需要回答预先定义的人(即所谓的超预定人问题)中排除的查询时,这是所谓的“超预定人问题”(简称OOP为简单化);为缓解问题,我们在本文件中提出了一个由两个子部分组成的新的检索到预测模式,即:(1)人检索模型(PRM),它从基于自然语言推断(NLI)模式的全球收藏中检索到一个人,由此推断的人与预定义的人之间的相互作用可能受到严重限制;(2)POS-骨质变异变异器(PS-Trafored),它采用一个进一步考虑地面反应中所用实际人的事后分布,最大限度地缩小培训和推断之间的差距。此外,我们从一个基于自然语言推断(NLI)模式的全球收藏中提取了一个个人资料,称为IT-CONAI2,该推断人与O-AIAA首次展示关于人际评价的大规模数据模型,以显示我们的CR-AIS2号模型和CURAIAA的模型,从而第一个展示了人类结果的模型。