Event cameras asynchronously capture brightness changes with microsecond latency, offering exceptional temporal precision but suffering from severe noise and signal inconsistencies. Unlike conventional signals, events carry state information through polarities and process information through inter-event time intervals. However, existing event filters often ignore the latter, producing outputs that are sparser than the raw input and limiting the reconstruction of continuous irradiance dynamics. We propose the Event Density Flow Filter (EDFilter), a framework that models event generation as threshold-crossing probability fluxes arising from the stochastic diffusion of irradiance trajectories. EDFilter performs nonparametric, kernel-based estimation of probability flux and reconstructs the continuous event density flow using an O(1) recursive solver, enabling real-time processing. The Rotary Event Dataset (RED), featuring microsecond-resolution ground-truth irradiance flow under controlled illumination is also presented for event quality evaluation. Experiments demonstrate that EDFilter achieves high-fidelity, physically interpretable event denoising and motion reconstruction.
翻译:事件相机以微秒级延迟异步捕获亮度变化,具备卓越的时间精度,但存在严重的噪声和信号不一致性问题。与传统信号不同,事件通过极性携带状态信息,并通过事件间时间间隔传递过程信息。然而,现有事件滤波器常忽略后者,导致输出比原始输入更稀疏,限制了连续辐照度动态的重建。我们提出了事件密度流滤波器(EDFilter),该框架将事件生成建模为由辐照度轨迹随机扩散产生的阈值穿越概率通量。EDFilter采用非参数化、基于核函数的概率通量估计方法,并利用O(1)递归求解器重建连续事件密度流,实现实时处理。同时,本文还介绍了旋转事件数据集(RED),该数据集在受控光照条件下提供微秒级分辨率的真实辐照度流,用于事件质量评估。实验表明,EDFilter能够实现高保真、物理可解释的事件去噪与运动重建。