Accurate identification of the penetration process relies heavily on prior feature values of penetration acceleration. However, these feature values are typically obtained through long simulation cycles and expensive computations. To overcome this limitation, this paper proposes a multi-layer Perceptron architecture, termed squeeze and excitation multi-layer perceptron (SE-MLP), which integrates a channel attention mechanism with residual connections to enable rapid prediction of acceleration feature values. Using physical parameters under different working conditions as inputs, the model outputs layer-wise acceleration features, thereby establishing a nonlinear mapping between physical parameters and penetration characteristics. Comparative experiments against conventional MLP, XGBoost, and Transformer models demonstrate that SE-MLP achieves superior prediction accuracy, generalization, and stability. Ablation studies further confirm that both the channel attention module and residual structure contribute significantly to performance gains. Numerical simulations and range recovery tests show that the discrepancies between predicted and measured acceleration peaks and pulse widths remain within acceptable engineering tolerances. These results validate the feasibility and engineering applicability of the proposed method and provide a practical basis for rapidly generating prior feature values for penetration fuzes.


翻译:侵彻过程的精确识别在很大程度上依赖于侵彻加速度的先验特征值。然而,这些特征值通常需要通过漫长的仿真周期和昂贵的计算才能获得。为克服这一局限,本文提出了一种多层感知器架构,称为挤压与激励多层感知器(SE-MLP),该架构将通道注意力机制与残差连接相结合,以实现加速度特征值的快速预测。该模型以不同工况下的物理参数作为输入,输出分层加速度特征,从而建立物理参数与侵彻特性之间的非线性映射。与传统的MLP、XGBoost和Transformer模型进行的对比实验表明,SE-MLP在预测精度、泛化能力和稳定性方面均表现更优。消融研究进一步证实,通道注意力模块和残差结构均对性能提升有显著贡献。数值仿真与靶场回收试验表明,预测与实测的加速度峰值及脉冲宽度之间的差异保持在可接受的工程容差范围内。这些结果验证了所提方法的可行性与工程适用性,并为快速生成侵彻引信先验特征值提供了实用依据。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
18+阅读 · 2020年10月18日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员