Testing high-dimensional quantile regression coefficients is crucial, as tail quantiles often reveal more than the mean in many practical applications. Nevertheless, the sparsity pattern of the alternative hypothesis is typically unknown in practice, posing a major challenge. To address this, we propose an adaptive test that remains powerful across both sparse and dense alternatives.We first establish the asymptotic independence between the max-type test statistic proposed by \citet{tang2022conditional} and the sum-type test statistic introduced by \citet{chen2024hypothesis}. Building on this result, we propose a Cauchy combination test that effectively integrates the strengths of both statistics and achieves robust performance across a wide range of sparsity levels. Simulation studies and real data applications demonstrate that our proposed procedure outperforms existing methods in terms of both size control and power.
翻译:高维分位数回归系数的检验至关重要,因为在许多实际应用中,尾部(尾端)分位数往往比均值揭示更多信息。然而,备择假设的稀疏模式在实践中通常是未知的,这构成了一个主要挑战。为解决此问题,我们提出了一种自适应检验,该检验在稀疏和稠密备择假设下均能保持较高的检验功效。我们首先建立了由 \citet{tang2022conditional} 提出的极大值型检验统计量与由 \citet{chen2024hypothesis} 提出的求和型检验统计量之间的渐近独立性。基于此结果,我们提出了一种柯西组合检验,该检验有效地整合了两种统计量的优势,并在广泛的稀疏度水平上实现了稳健的性能。模拟研究和实际数据应用表明,我们提出的方法在水平控制和检验功效方面均优于现有方法。