Recent years have witnessed an increasing use of coordinated accounts on social media, operated by misinformation campaigns to influence public opinion and manipulate social outcomes. Consequently, there is an urgent need to develop an effective methodology for coordinated group detection to combat the misinformation on social media. However, existing works suffer from various drawbacks, such as, either limited performance due to extreme reliance on predefined signatures of coordination, or instead an inability to address the natural sparsity of account activities on social media with useful prior domain knowledge. Therefore, in this paper, we propose a coordination detection framework incorporating neural temporal point process with prior knowledge such as temporal logic or pre-defined filtering functions. Specifically, when modeling the observed data from social media with neural temporal point process, we jointly learn a Gibbs-like distribution of group assignment based on how consistent an assignment is to (1) the account embedding space and (2) the prior knowledge. To address the challenge that the distribution is hard to be efficiently computed and sampled from, we design a theoretically guaranteed variational inference approach to learn a mean-field approximation for it. Experimental results on a real-world dataset show the effectiveness of our proposed method compared to the SOTA model in both unsupervised and semi-supervised settings. We further apply our model on a COVID-19 Vaccine Tweets dataset. The detection result suggests the presence of suspicious coordinated efforts on spreading misinformation about COVID-19 vaccines.
翻译:近些年来,人们越来越多地使用社交媒体上的协调账户,通过错误信息运动来影响公众舆论并操纵社会成果,因此,迫切需要制定有效方法,以协调群体检测,打击社交媒体上的错误信息,然而,现有工作存在各种缺陷,例如,由于极端依赖事先确定的协调标志,业绩有限,或者无法解决社交媒体上账户活动的自然分散问题,而事先掌握有用的领域知识,因此,我们在本文件中提议了一个协调检测框架,纳入神经时间点进程,并事先掌握时间逻辑或预先确定的过滤功能等知识。具体地说,在用神经时间点模拟社会媒体的观测数据进行模拟以打击社交媒体上的错误信息时,我们共同学习了类似Gibus的团体任务分配,其依据是任务对(1) 包含空间的账户和(2) 先前的知识的一贯性。为了应对社交媒体上账户分配难以有效计算和抽样的挑战,我们设计了一个理论上有保障的变差率模型,以学习中位近点,例如时间逻辑或预先界定的过滤功能。具体地说,当用神经时间点模拟数据显示从社交媒体上观察到的观察数据时,我们拟议的方法在SOVA-VI的传播模型和SUVI的模拟探测结果方面进一步显示我们在SOV-V-SUSI-V-SUBS-SU-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-V-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-