Task-oriented dialogue (TOD) systems have been applied in a range of domains to support human users to achieve specific goals. Systems are typically constructed for a single domain or language and do not generalise well beyond this. Their extension to other languages in particular is restricted by the lack of available training data for many of the world's languages. To support work on Natural Language Understanding (NLU) in TOD across multiple languages and domains simultaneously, we constructed MULTI3NLU++, a multilingual, multi-intent, multi-domain dataset. MULTI3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). MULTI3NLU++ inherits the multi-intent property of NLU++, where an utterance may be labelled with multiple intents, providing a more realistic representation of a user's goals and aligning with the more complex tasks that commercial systems aim to model. We use MULTI3NLU++ to benchmark state-of-the-art multilingual language models as well as Machine Translation and Question Answering systems for the NLU task of intent detection for TOD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting.
翻译:以任务为导向的对话(TOD)系统已应用于一系列领域,以支持人类用户实现具体目标。系统通常为单一域或语言而建立,而且没有超出此范围的范围。系统推广到其他语言,特别是由于缺乏世界上许多语言的培训数据而受到限制。为了支持以多种语言和领域同时在TOD进行关于自然语言理解(NLU)的工作,我们同时建造了多语种和多语种+++(Mext3NLU+)、多语种、多语种、多域数据集。MUL3NLU+++(MU3NU++)扩大了仅使用英语的NLU+(NLU+)数据集,将人工翻译成两种高、中、低资源语言(西班牙语、马拉地语、土耳其语和阿姆哈拉语)的多种语言。MUDU3NLU++(NLU+)继承了NLU++(多语种)的多语种属性,其中的语种可能被贴有多重意图,更现实地表述用户的目标,并符合商业系统要制作模型的更复杂的任务。我们用MI3NNLU+++7,将高语言检测系统作为基准,特别是多语言的多语种任务测试系统。