Research on human skin anatomy reveals its complex multi-scale, multi-phase nature, with up to 70% of its composition being bounded and free water. Fluid movement plays a key role in the skin's mechanical and biological responses, influencing its time-dependent behavior and nutrient transport. Poroelastic modeling is a promising approach for studying skin dynamics across scales by integrating multi-physics processes. This paper introduces a hierarchical two-compartment model capturing fluid distribution in the interstitium and micro-circulation. A theoretical framework is developed with a biphasic interstitium -- distinguishing interstitial fluid and non-structural cells -- and analyzed through a one-dimensional consolidation test of a column. This biphasic approach allows separate modeling of cell and fluid motion, considering their differing characteristic times. An appendix discusses extending the model to include biological exchanges like oxygen transport. Preliminary results indicate that cell viscosity introduces a second characteristic time, and at high viscosity and short time scales, cells behave similarly to solids. A simplified model was used to replicate an experimental campaign on short time scales. Local pressure (up to 31 kPa) was applied to dorsal finger skin using a laser Doppler probe PF801 (Perimed Sweden), following a setup described in Fromy Brain Res (1998). The model qualitatively captured ischemia and post-occlusive reactive hyperemia, aligning with experimental data. All numerical simulations used the open-source software FEniCSx v0.9.0. To ensure transparency and reproducibility, anonymized experimental data and finite element codes are publicly available on GitHub.
翻译:暂无翻译