Recent studies have demonstrated that smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. The SFDIA detection has become one of the focuses of smart grid research. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at \textit{https://github.com/HubYZ/PowerFDNet}.
翻译:最近的研究显示,智能电网很容易被隐蔽的虚假数据注入攻击(SFDIAs),因为SFDIA可以绕过残余的坏数据探测机制。SFDIA探测系统已成为智能网网研究的重点之一。基于深层次学习技术的方法在探测SFDIA方面显示出很有希望的准确性。然而,大多数现有方法依靠的是测量序列的时间结构,但没有考虑到公共汽车和传输线路之间的空间结构。为了解决这个问题,我们提议建立一个随机深层次网络,即PowerFDNet(PowerFDNet),用于在AC型电网中探测SFDIA检测。PowerFDNet由两种次级结构组成:空间结构(SA)和时间结构(TA)。基于深层次学习技术的方法在探测SFDIA的探测中显示出很有希望的准确性。TAFDMA的模型旨在模拟测量序列的时间结构。因此,拟议的PowidFDNet可以有效地模拟Spotimeoporal-oporal 结构测量结构。在基准智能电网中检测SDI-ral-stalstalstational-stablestable labalstational acal agreal destrupstrubal a laftations acured laft laft lapal lapal laft lapal a lapal a lapal de ladal a lad a lad a ladal ladal ladal ladal atoment atomental atomental dretad atomental lad lad lad lad ladretad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad ladal lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad ladaldal ladal as as as as as a lad