In August 2019, we introduced to our members and customers the idea of moving LinkedIn's two core talent products -- Jobs and Recruiter -- onto a single platform to help talent professionals be even more productive. This single platform is called the New Recruiter & Jobs. A critical and difficult part of this effort is migrating their existing data from the legacy database to the new database and ensure there is no data discrepancy and no down time. In this article, we will discuss the general architecture for a successful data migration and the thought process we followed. Then we expand these ideas to our circumstances and explain in more detail about our specific challenges and solutions. In the Ramp Process section, we explain the inherent difficulties in satisfying our success criteria and describe how we overcome these difficulties and fulfill the success criteria practically.


翻译:2019年8月,我们向我们的成员和客户介绍了将LinkedIn的两个核心人才产品 -- -- 职业和招聘者 -- -- 移动到一个平台的想法,以帮助人才专业人员更有成效。这个平台被称为新招聘者和工作。这项努力的关键和困难部分是将其现有数据从遗留数据库转移到新的数据库,确保没有数据差异和时间下降。在本篇文章中,我们将讨论成功数据迁移的总体架构和我们遵循的思维过程。然后,我们将这些想法扩展到我们的情况,更详细地解释我们的具体挑战和解决办法。在Ramp Process部分,我们解释在满足我们的成功标准方面的内在困难,并描述我们如何克服这些困难和切实达到成功标准。

0
下载
关闭预览

相关内容

LinkedIn 是一家商业客户导向的社交网络服务网站,网站的目的是让注册用户维护他们在商业交往中认识并信任的联系人,这些人被称为“人脉”(Connections)。用户可以邀请他认识的人成为人脉。
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员