In a recently introduced coset guessing game, Alice plays against Bob and Charlie, aiming to meet a joint winning condition. Bob and Charlie can only communicate before the game starts to devise a joint strategy. The game we consider begins with Alice preparing a 2m-qubit quantum state based on a random selection of three parameters. She sends the first m qubits to Bob and the rest to Charlie and then reveals to them her choice for one of the parameters. Bob is supposed to guess one of the hidden parameters, Charlie the other, and they win if both guesses are correct. From previous work, we know that the probability of Bob's and Charlie's guesses being simultaneously correct goes to zero exponentially as m increases. We derive a tight upper bound on this probability and show how Bob and Charlie can achieve it. While developing the optimal strategy, we devised an encoding circuit using only CNOT and Hadamard gates, which could be relevant for building efficient CSS-coded systems. We found that the role of quantum information that Alice communicates to Bob and Charlie is to make their responses correlated rather than improve their individual (marginal) correct guessing rates.


翻译:在最近提出的陪集猜测游戏中,Alice与Bob和Charlie对抗,旨在满足联合获胜条件。Bob和Charlie只能在游戏开始前进行通信以制定联合策略。我们考虑的游戏开始时,Alice根据三个参数的随机选择制备一个2m量子比特的量子态。她将前m个量子比特发送给Bob,其余发送给Charlie,然后向他们揭示她选择的其中一个参数。Bob需要猜测一个隐藏参数,Charlie猜测另一个,若两者均猜对则获胜。根据先前研究可知,随着m增加,Bob和Charlie同时猜对的概率以指数形式趋近于零。我们推导了该概率的严格上界,并展示了Bob和Charlie达成该上界的方法。在开发最优策略过程中,我们设计了一种仅使用CNOT门和Hadamard门的编码电路,这可能对构建高效的CSS编码系统具有参考价值。我们发现,Alice传递给Bob和Charlie的量子信息的作用在于使他们的响应产生关联,而非提升各自(边缘)的正确猜测率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2021年12月2日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
22+阅读 · 2021年12月2日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员