Complex flow simulations are conventionally performed on HPC clusters. However, the limited availability of HPC resources and steep learning curve of executing on traditional supercomputer infrastructure has drawn attention towards deploying flow simulation software on the cloud. We showcase how a complex computational framework -- that can evaluate COVID-19 transmission risk in various indoor classroom scenarios -- can be abstracted and deployed on cloud services. The availability of such cloud-based personalized planning tools can enable educational institutions, medical institutions, public sector workers (courthouses, police stations, airports, etc.), and other entities to comprehensively evaluate various in-person interaction scenarios for transmission risk. We deploy the simulation framework on the Azure cloud framework, utilizing the Dendro-kT mesh generation tool and PETSc solvers. The cloud abstraction is provided by RocketML cloud infrastructure. We compare the performance of the cloud machines with state-of-the-art HPC machine TACC Frontera. Our results suggest that cloud-based HPC resources are a viable strategy for a diverse array of end-users to rapidly and efficiently deploy simulation software.
翻译:在HPC集群上通常进行复杂的流动模拟,然而,HPC资源有限,传统超级计算机基础设施执行过程中的学习曲线陡峭,吸引人们注意在云层上部署流动模拟软件。我们展示了如何将复杂的计算框架 -- -- 能够在各种室内课堂情景中评估COVID-19传播风险 -- -- 抽取并用于云服务。这种基于云的个性化规划工具的可用性使教育机构、医疗机构、公共部门工作人员(法院、警察局、机场等)和其他实体能够全面评价各种关于传输风险的现场互动假设。我们利用Dendro-kT网云生成工具和PETSC解答器,在Azure云框架上部署模拟框架。云的抽取由火箭ML云基础设施提供。我们将云机的性能与最先进的HPC机器TACC Frontera相比较。我们的结果表明,基于云的HPC资源是各种终端用户迅速高效地使用模拟软件的可行战略。