This paper surveys an important class of methods that combine iterative projection methods and variational regularization methods for large-scale inverse problems. Iterative methods such as Krylov subspace methods are invaluable in the numerical linear algebra community and have proved important in solving inverse problems due to their inherent regularizing properties and their ability to handle large-scale problems. Variational regularization describes a broad and important class of methods that are used to obtain reliable solutions to inverse problems, whereby one solves a modified problem that incorporates prior knowledge. Hybrid projection methods combine iterative projection methods with variational regularization techniques in a synergistic way, providing researchers with a powerful computational framework for solving very large inverse problems. Although the idea of a hybrid Krylov method for linear inverse problems goes back to the 1980s, several recent advances on new regularization frameworks and methodologies have made this field ripe for extensions, further analyses, and new applications. In this paper, we provide a practical and accessible introduction to hybrid projection methods in the context of solving large (linear) inverse problems.


翻译:本文对一系列重要的方法进行了调查,这些方法结合了反复预测方法和大规模反向问题的变式正规化方法; Krylov 子空间方法等迭代方法在数值线性代数群中非常宝贵,并证明对于解决由于内在的正规化特性和处理大规模问题的能力而产生的反向问题十分重要; 变式正规化描述了一系列广泛而重要的方法,用于为反向问题找到可靠的解决办法,从而解决包含先前知识的经修改的问题; 混合预测方法以协同方式将迭代预测方法与变式正规化技术相结合,为研究人员解决非常大的反向问题提供一个强大的计算框架; 尽管对线性反问题采用混合的Krylov方法的想法可追溯到1980年代,但最近关于新的正规化框架和方法的一些进展使这个领域在扩展、进一步分析和新的应用方面已经成熟; 在本文件中,我们在解决大(线性)反向问题时,对混合预测方法提供了实用和方便的介绍。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
17+阅读 · 2021年1月21日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员