The next generation of physical science involves robot scientists - autonomous physical science systems capable of experimental design, execution, and analysis in a closed loop. Such systems have shown real-world success for scientific exploration and discovery, including the first discovery of a best-in-class material. To build and use these systems, the next generation workforce requires expertise in diverse areas including ML, control systems, measurement science, materials synthesis, decision theory, among others. However, education is lagging. Educators need a low-cost, easy-to-use platform to teach the required skills. Industry can also use such a platform for developing and evaluating autonomous physical science methodologies. We present the next generation in science education, a kit for building a low-cost autonomous scientist. The kit was used during two courses at the University of Maryland to teach undergraduate and graduate students autonomous physical science. We discuss its use in the course and its greater capability to teach the dual tasks of autonomous model exploration, optimization, and determination, with an example of autonomous experimental "discovery" of the Henderson-Hasselbalch equation.
翻译:下一代物理科学涉及机器人科学家 -- -- 能够以封闭循环方式进行实验设计、执行和分析的自主物理科学系统,这些系统在科学探索和发现方面表现出现实世界的成功,包括首次发现一流的最佳材料。为了建立和使用这些系统,下一代劳动力需要不同领域的专业知识,包括ML、控制系统、测量科学、材料合成、决策理论等。然而,教育落后。教育工作者需要一个低成本、易于使用的平台来教授所需的技能。工业界还可以使用这样一个平台来开发和评估自主物理方法。我们向下一代展示科学教育,一个用于建设低成本自主科学家的工具包。在马里兰大学的两个课程中,该工具包被用于教授本科生和研究生自主物理科学。我们讨论了该课程的使用情况及其在教授自主模型探索、优化和决心的双重任务方面的更大能力,并举亨德森-哈塞尔伯奇方程式的自主实验“发现”为例。