Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
翻译:回答需要做出潜在决定的复杂问题是一项具有挑战性的任务,特别是在有有限的监督的情况下。最近的工作利用了大型语言模型(LMs)的能力,通过演示如何输出中间合理化,同时解决一个复杂问题,在单关口解决复杂的问题。我们引入了“过度促动”,我们反复将复杂任务分成一个简单的任务,解决它,然后重复这一进程,直到我们得到最终解决办法。连续地促使对从简单问题的监管中解开复杂问题的监管分解,从而使我们能够(1)在每一个推理步骤中都有多个机会查询文本中的例子(2)从回答的问题中分别学习解析问题,包括使用合成数据,(3)在大型LMM不起作用的情况下,使用“不协调的”部分。中间监督一般是手工写成的,收集费用很高。我们引入了一种方法,可以用来将模型解剖和回答中间问题的能力引入合成数据集。我们最好的模型(连续的快速解析示例)与回答问题解析的FDR5的绝对版本相比,我们的最佳模型(连续的模型)在FDR1的绝对版本上实现了数据改进。