This study explores the intricacies of waiting games, a novel dynamic that emerged with Ethereum's transition to a Proof-of-Stake (PoS)-based block proposer selection protocol. Within this PoS framework, validators acquire a distinct monopoly position during their assigned slots, given that block proposal rights are set deterministically, contrasting with Proof-of-Work (PoW) protocols. Consequently, validators have the power to delay block proposals, stepping outside the honest validator specs, optimizing potential returns through MEV payments. Nonetheless, this strategic behaviour introduces the risk of orphaning if attestors fail to observe and vote on the block timely. Our quantitative analysis of this waiting phenomenon and its associated risks reveals an opportunity for enhanced MEV extraction, exceeding standard protocol rewards, and providing sufficient incentives for validators to play the game. Notably, our findings indicate that delayed proposals do not always result in orphaning and orphaned blocks are not consistently proposed later than non-orphaned ones. To further examine consensus stability under varying network conditions, we adopt an agent-based simulation model tailored for PoS-Ethereum, illustrating that consensus disruption will not be observed unless significant delay strategies are adopted. Ultimately, this research offers valuable insights into the advent of waiting games on Ethereum, providing a comprehensive understanding of trade-offs and potential profits for validators within the blockchain ecosystem.
翻译:暂无翻译